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Introduction

The microbiome has tremendous potential to impact host physiology and metabolism [1]. Gut

bacteria in particular have been linked to diverse functions and specific diseases [2]. Mechanis-

tic studies remain challenging in part due to the complexity of the mammalian gut micro-

biome, which can vary greatly between individuals and is composed of approximately 1,000

species of microorganisms [3]. Invertebrate systems are fruitful models for dissecting complex

host–microbe interactions. In particular, Drosophila melanogaster, the fruit fly, is one of the

most powerful models for animal genetics and has a simple microbiome composed of 5 to 20

microbial species that can be reconstituted in the lab by brief treatment of eggs with bleach fol-

lowed by association with defined bacterial species [4, 5]. Thus, the fly model facilitates explo-

ration of both host and bacterial genetics.

Fly-associated microbes have been studied for over a century [6, 7], and recent publications

have described how host immune effectors and bacterial genes influence the composition of

the microbiome [8–11]. Bacterial presence impacts various fly phenotypes including develop-

ment [12], behavior [13, 14], life span [15], and disease resistance [16]. Since ingestion of

microorganisms contributes to a substantial portion of the macronutrient and micronutrient

intake of flies, it is unclear to what extent the effects of the microbiome are due to resident gut

microbes versus microbes serving as agricultural goods for consumption from the food surface

[17–20]. In the lab, gut microbe composition is highly variable, and these microbes can be lost

if flies do not continue to ingest live bacteria [21, 22]. However, recent work has identified gut

symbionts that stably colonize specific niches in the gut [23, 24]. We propose that identifying

these symbionts is a critical step in establishing a fly model for the gut microbiome.

Bacteria can stably colonize the fly gut

In the lab, flies live on top of their food, which serves as a rich substrate for microbial

growth (Fig 1A–1D). Recent studies have attempted to decouple the influence of fly food

bacteria and fly gut bacteria by (1) frequent transfer to fresh, sterile food [18, 22]; (2) use of

large enclosures with low numbers of flies [23]; or (3) capillary feeding, whereby bacteria

have no substrate for growth outside of the gut [24] (Fig 1E–1G). These techniques reveal

that different bacteria occupy different microenvironments within the fly and its enclosure

[25].

Obadia and colleagues [24] took advantage of the capillary-feeding approach to quantify

colonization of individual flies after ingesting a single dose of a bacterial strain isolated from

wild flies, lab flies, or humans. They found that colonization is probabilistic, with the odds

increasing with higher doses. A spectrum of colonization stability was identified between dif-

ferent bacterial strains that largely depended upon their origin—bacterial strains from wild
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flies tended to stably colonize even at low doses. Out of the 17 strains screened, 11 were catego-

rized as stable colonizers, including the genera Lactobacillus, Leuconostoc, Enterococcus, and

Acetobacter.
Using an alternative approach to identify bona fide gut colonizers (Fig 1G), Pais and col-

leagues [23] showed that Acetobacter thailandicus stably colonizes the gut of D. melanoga-
ster but not the gut of the closely related D. simulans. Thus far, stable colonizers appear to

favor regions such as the foregut (crop and proventriculus [also known as cardia]), suggest-

ing that, as in mammals, mechanisms exist to colonize specific niches [23, 24]. Colonization

is limited to certain fly species [23] or bacterial strains [24], suggestive of underlying mecha-

nisms of specificity. Both host and bacterial mechanisms likely drive this specificity. For

example, on the host side, the acidic copper cell region of the midgut is known to limit bac-

terial survival [27]. On the bacterial side, Winans and colleagues [28] used a metagenome-

wide association approach to examine the evolutionary signature of selection on laboratory-

fly–associated bacteria. The study revealed that genes for flagellar motility were lost and

genes for tolerance of nitrogenous waste were acquired—potentially the consequence of

relaxed selective forces on homogeneous food in the lab and frequent cycling of bacteria

between gut and external habitats. Future studies might use similar approaches on validated

gut colonizers to determine whether these genes and others impact host–microbe interac-

tions that lead to stable colonization. Strategies that the fly host and resident microbes use

to form stable associations may be informative on how the mammalian gut microbiome

develops.

Fig 1. A microbe’s perspective on the laboratory fly. (A) In the laboratory fly vial, many bacteria grow on the food, where they are

consumed by both larval and adult flies. A smaller population of bacteria are harbored in the fly gut, where they can be actively consumed

by the fly or shed back onto the food. Processes on the food and in the fly gut select for different bacterial compositions [25]. (B) Bacterial

metabolism on the food changes the composition of the provided media, converting sugars and other carbohydrates to more protein-rich

and fat-rich bacterial biomass, which can contribute to fly nutrition [17–20]. (C) Digestive processes in the fly midgut kill bacteria,

liberating their nutrients for absorption by the intestinal epithelial cells. Fly cells are protected from the bacteria by a peritrophic matrix

[26]. (D) Large populations of bacteria can stably occupy the crop and cardia in the fly foregut [23, 24]. (E–G) Stable versus transient

colonization of the fly gut can be distinguished by minimizing exposure to environmental bacteria. These techniques include (E) frequent

transfers to fresh food [18, 22], (F) capillary feeding [24], and (G) housing low fly numbers in large enclosures [23].

https://doi.org/10.1371/journal.ppat.1008398.g001
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Fly–microbe symbiosis

Pais and colleagues [23] further discovered a mutual growth enhancement in A. thailandicus
and its D. melanogaster host that was not conferred to D. simulans, implying an evolved symbi-

osis. Storelli and colleagues [29] found similar evidence for an evolved mutualism with Lacto-
bacillus plantarum. A feeding or foraging preference for specific bacteria was found

independently by several labs [13, 30, 31]. Thus, fly-associated bacteria can colonize the host,

benefit the host, and benefit from the host, and the host seeks them out. Together, these fea-

tures make Drosophila a strong model system to study the mechanisms of symbiotic associa-

tions between animals and their bacteria. Whether resident gut bacteria are required for the

various organismal phenotypes is still unclear, given the difficulty in separating the impacts of

food and gut bacteria in many of these studies. However, the combined body of evidence sug-

gests an evolved mutualistic relationship between flies and their bacteria that has specific

mechanisms at molecular, cellular, organismal, and ecological scales. While a variety of models

will be necessary to unravel the complexities of the microbiome, these features of Drosophila
suggest it can be an integral part of the overall mission to understand host-microbiome

systems.

The same bacterial abundance can be achieved through different rates of

growth and death

Microbiome studies typically quantify the relative abundance of different bacterial species,

providing snapshots of a dynamic gut microbial community that do not take into consider-

ation the total abundance of bacteria in the gut or the turnover of cells due to bacterial growth,

death, and shedding. Recently developed methods to measure the turnover of bacterial cells

inside the fly gut uncovered high-turnover rates [24] and spatial structure [32]. Different stably

associated strains of the same bacterial species, L. plantarum, undergo widely different turn-

over rates [24]. One consequence of this is that the fly receives a very different nutritional con-

tribution from these different strains despite a similar bacterial abundance. Thus, similar

strains with similar abundance in the gut can have very different nutritional impacts on the

host. The techniques developed in flies for quantifying microbial growth and death rates may

be generalized to microbiome dynamics in mammalian models.

Drosophila can model mammalian gut complexity

Microbiome impacts on the host may result from direct effects of the individual bacterial spe-

cies or from interactions between them. Interactions between Lactobacillus and Acetobacter
species affect fly fat content [33], and genes involved in lactate and acetoin metabolism under-

lie the bacterial mutualism [34]. The ease of generating gnotobiotic flies and modularity of the

fly-microbiome facilitates combinatorial studies to explore the impacts of complexity. Combi-

natorial experimental designs have shown that higher-order interactions between 3, 4, and 5

species of the microbiome affect fly life history strategy [35, 36]. Interactions between com-

mensals and pathogens also influence host health. Vibrio cholera strains modulate their type

VI secretion system depending on which commensal bacterial strains are present, and this

determines whether Vibrio kills the fly [37]. Despite the tractability of the fly-microbiome

model, identifying underlying mechanisms driving organismal phenotypes will be difficult to

decouple from nutritional influences. Small changes in microbial growth rates, both in the gut

or in the habitat, can vastly change nutritional contributions to the fly. Testing whether supple-

mentation with heat-killed bacteria phenocopies live bacterial inoculations might help untan-

gle some of these effects, but studies rarely provide biomass equivalent to live bacterial growth.
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We speculate that the strength of the fly model in uncovering mechanisms of host–microbe

interactions is augmented by the effect of the microbiome on organismal phenotypes.

Conclusion

The simple microbiome of flies and ease of rearing gnotobiotic animals makes them an attrac-

tive model to incorporate into studies of the gut microbiome. Recent discovery of stable colo-

nizing strains, the development of techniques to isolate the gut microbiome from bacterial

growth on the food, and the ability to quantify turnover of the population of gut bacterial cells

allow unprecedented tractability in this powerful genetic model animal.
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